Skip to main content

Advertisement

Log in

Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A significant impediment to the deployment of vibration-based energy harvesting devices has been the limitation of most low-frequency transducers, usually in the form of unimorph or bimorph cantilever beam, to extract energy from a very narrow bandwidth around the transducer’s fundamental frequency. In such devices, a slight deviation from the fundamental frequency causes a significant reduction in the level of harvested power by several orders of magnitudes. Additionally, most of the current research efforts on the design of piezoelectric energy harvesters have had limited success in achieving low resonance frequency. To overcome these challenges, we introduce an enhanced broadband low-frequency piezomagnetoelastic energy harvester. This harvester consists of a partially covered piezoelectric cantilever beam with a fixed magnet mass at the top of the magnet tip mass. A nonlinear distributed-parameter model based on Euler–Bernoulli beam theory and Galerkin discretization is developed. This electromechanical model is validated with previous experimental measurements for a specific value of the spacing distance between the two magnets. A parametric study is performed to determine the effects of the spacing distance between the two magnets on the static position of the harvester, natural frequency, and level of the harvested power. It is demonstrated that a decrease between the two attractive magnets results in a decrease in the natural frequency of the harvester with a strong softening behavior which gives the opportunity to harvest energy at broadband low-frequency range. The results also show that the presence and importance of the softening behavior depends on the electrical load resistance. In conclusion, the results show that depending on the available low excitation frequency, an enhanced piezoelectric energy harvester can be tuned and optimized by changing the spacing distance between the two tip magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sodano, H., Park, G., Inman, D.J.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  2. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for micro-systems applications. Meas. Sci. Technol. 17, 175–195 (2006)

    Article  Google Scholar 

  3. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  4. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  5. Tang, L., Yang, Y., Soh, C.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867 (2009)

    Article  Google Scholar 

  6. Abdelkefi, A.: Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations. PhD Dissertation. Virginia Tech (2012)

  7. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2005)

    Article  Google Scholar 

  8. Clair, D., Bibo, A., Sennakesavababu, V., Daqaq, M.F., Li, G.: A scalable concept for micropower generation using flow-induced self-excited oscillations. Appl. Phys. Lett. 96, 144103 (2010)

    Article  Google Scholar 

  9. Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)

    Article  Google Scholar 

  10. Abdelkefi, A., Ghommem, M.: Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theor. Appl. Mech. Lett. 3, 052001 (2013)

    Article  Google Scholar 

  11. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  12. Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2012)

    Article  Google Scholar 

  13. Wang, L., Yuan, F.G.: Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 17, 045009 (2008)

    Article  Google Scholar 

  14. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)

    Article  Google Scholar 

  15. Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Smart Structures and Materials Conference. SPIE, 61740T (2006)

  16. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. Smart Mater. Struct. 20, 115007 (2011)

    Article  Google Scholar 

  17. Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133, 011007 (2011)

    Article  Google Scholar 

  18. Abdelkefi, A., Nuhait, A.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)

    Article  Google Scholar 

  19. Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101, 094102 (2012)

    Article  Google Scholar 

  20. Dai, H.L., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 77, 967–981 (2014)

    Article  MathSciNet  Google Scholar 

  21. Yan, Z., Abdelkefi, A.: Nonlinear characterization of concurrent energy harvesting from galloping and base excitations. Nonlinear Dyn. 77, 1171–1189 (2014)

    Article  Google Scholar 

  22. Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25, 174–186 (2014)

    Article  Google Scholar 

  23. Rosa, M., De Marqui, C.: Modeling and analysis of a piezoelectric energy harvester with varying cross-sectional area. Shock Vib. (2014). doi:10.1155/2014/930503

  24. Sharpes, N., Abdelkefi, A., Priya, S.: Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters. Energy Harvest. Syst. 1, 209 (2014)

    Google Scholar 

  25. Shahruz, S.M.: Design of mechanical bandpass filters for energy scavenging. J. Sound Vib. 292, 987–998 (2006)

    Article  Google Scholar 

  26. Challa, V.R., Prasad, M.G., Shi, Y., Fisher, T.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 17, 015035 (2008)

    Article  Google Scholar 

  27. Elvin, N.G., Elvin, A.A.: Effects of axial forces on cantilever piezoelectric resonators for structural energy harvesting. Strain 47, 153–157 (2011)

    Article  Google Scholar 

  28. Lui, H., Lee, C., Kobayashi, T., Tay, C.J., Quan, C.: Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater. Struct. 21, 035005 (2012)

    Article  Google Scholar 

  29. Quinn, D., Triplett, L., Vakakis, D., Bergman, L.: Comparing linear and essentially nonlinear vibration-based energy harvesting. J. Vib. Acoust. 133, 011001 (2011)

    Article  Google Scholar 

  30. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67, 1221–1232 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)

    Article  Google Scholar 

  33. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)

  34. Barton, D., Burrow, S., Clare, L.: Energy harvesting from vibrations with a nonlinear oscillator. J. Vib. Acoust. 132, 0210091 (2010)

    Article  Google Scholar 

  35. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  36. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640–653 (2010)

    Article  MATH  Google Scholar 

  37. Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)

    Article  Google Scholar 

  38. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Article  Google Scholar 

  39. Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24, 1303–1312 (2013)

    Article  Google Scholar 

  40. Massana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330, 6036–6052 (2011)

    Article  Google Scholar 

  41. Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 25, 1771–1785 (2014)

    Article  Google Scholar 

  42. Lin, J., Lee, B., Alphenaar, B.: The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency. Smart Mater. Struct. 19, 045012 (2010)

    Article  Google Scholar 

  43. Furlani, E.P.: Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. Elsevier, New York (2001)

    Google Scholar 

  44. Agashe, J.S., Arnold, D.P.: A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions. J. Phys. D Appl. Phys. 41, 105001 (2008)

    Article  Google Scholar 

  45. Upadrashta, D., Yang, Y., Tang, L.: Material strength consideration in the design optimization of nonlinear energy harvester. J. Intell. Mater. Syst. Struct. (2014). doi:10.1177/1045389X14546651

  46. Younis, M., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  47. Younis, M., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Micromech. Syst. 12, 672–680 (2003)

    Article  Google Scholar 

  48. Nayfeh, A.H., Younis, M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  49. Abdelkefi, A., Barsallo, N., Tang, L.H., Yang, Y., Hajj, M.R.: Modeling, validation, and performance of low-frequency piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25, 1429–1444 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Office of Science, Technology and Innovation, SENACYT, Panama Grant-2011-1012 (Masters in Specific Areas), and IFARHU with the scholarship No. 1.20.1.3.703.04.02.629 for funding this present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessattar Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkefi, A., Barsallo, N. Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters. Nonlinear Dyn 83, 41–56 (2016). https://doi.org/10.1007/s11071-015-2306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2306-8

Keywords

Navigation